指数函数学习

tonyfang posted @ 2015年8月21日 21:34 in math with tags math , 730 阅读

形如$y=a^x(a>0且a≠1)$的函数为指数函数,定义域为$R$。

关于$a$的限制的说明:

1.若$a=0$,那么当$x>0$时,$y$恒等于0;当$x\leq0$时,没有意义。

2.若$a<0$,则当$x$为一些分数时,$y$不在实数范围内,比如$a=-4,x=\frac{1}{2}$。

3.若$a=1$,$y=1^x=1$是个常函数,没有研究必要。

综上,$a>0且a≠1$。

性质:

1.定义域$R$,值域$(0,+\infty)$

2.$a^0=1$,所以过定点$(0,1)$

3.$0<a<1$时,为单调减函数,$a>1$时,为单调增函数(均在定义域范围内)。【这点与对数函数相同,可以联合记忆】。

4.$a^1=a$,函数过定点$(1,a)$,即当$x=1$时,$y$等于底数$a$。

5.$0<a<1$时,当$x<0$时,$y>1$;当$x>0$,$0<y<1$。

$a>1$时,当$x>0$时,$y>1$;当$x<0$,$0<y<1$。

6.非奇非偶函数,$y=a^x$与对数函数$y=log_{a}x$关于$y=x$对称。

简单的解释:

(1)$a$不确定时应分类讨论。

(2)$0<a<1,x→+\infty,y→0$,$a$的值越小,图像越靠近$y$轴,递减速度越快

           $a>1,x→-\infty,y→0$,$a$的值越大, 图像越靠近$y$轴,递增速度越快

(3)$y=a^x$与$y=(\frac{1}{a})^x$关于$y$轴对称。

比较函数大小:$0<x<+\infty$时,底大幂大;$-\infty<x<0$时,底小幂小。

 

ICEGATE e payment 说:
2022年8月10日 14:48

ICEGATE ePayment is an online portal for easy payment of customs challan. Taxpayers who associates with the Goods movement must have to get their challans and paid with ICEGATE before their goods imported or exported from consignment. The custom duty charges laid based on the product size and goods brands, ICEGATE e payment which are mandatory to pay at the custom gate. Thus CBIC ePayment gives a direct portal to make this without and list all your challans at one place.

State bank UPI PIN 说:
2022年11月05日 17:56

Digital applications established by the SBI bank India always have a significant impact on SBI customers. The apps allow for easy money transfer, access to bank account, bank statements, and other banking services. State bank UPI PIN Today SBI bank customers can enjoy the BHIM SBI pay app, designed as a user’s mobile application. The BHIM SBI app is available on all operating systems, thus suiting all customers.


登录 *


loading captcha image...
(输入验证码)
or Ctrl+Enter